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Abstract

Three shock-capturing formulations for an entropy-stable discontinuous-Galerkin
spectral-element solver are examined: Galeão and Dutra do Carmo’s cross-wind stabi-
lization, Barter and Darmofal’s differential equation for propagating and diffusing the
artificial viscosity, and a novel method based on inter-element jumps of pressure and
a modified Ducros-style sensor. The behavior of the schemes is evaluated using stan-
dard inviscid and viscous test cases for shock-capturing methods, along with homoge-
neous isotropic turbulence, to assess the robustness and accuracy of the methods. The
novel artificial viscosity scheme provides a straightforward and robust shock-capturing
method for the current fluid solver that does not dampen turbulent fluctuations.

1 Introduction
One of the pacing items for the mainstream adoption of unstructured high-order meth-

ods is the development of a robust and general shock-capturing scheme that is competitive
with the total variation diminishing (TVD) schemes commonly used in 2nd-order finite-
volume formulations, without sacrificing the improved accuracy and efficiency of high-order
methods. During the last several years, we have been developing a discontinuous-Galerkin
spectral-element method (DGSEM) for scale-resolving simulations[1–6]. While this approach
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has shown the promise of improvement over low-order methods for scale-resolving simula-
tions, while still maintaining the geometric flexibility of unstructured meshing, all of the
validation examples consider low-speed applications due to the lack of an aforementioned
shock-capturing scheme. The goal of this work is to analyze, and ultimately develop, a new
shock-capturing methodology for the DGSEM framework, with a focus on shock-turbulence
interaction.

There are several established shock-capturing methods for DG schemes that have been
demonstrated for steady-state simulations. One common approach is to develop a shock
sensor, and reduce the polynomial order of the solution space in the region surrounding the
shock, while simultaneously increasing the resolution, i.e. feature-based h-p adaptation[7, 8].
In the context of a multiscale approach to sub-grid turbulence modeling, this approach ef-
fectively eliminates any turbulence from the shock region, which is obviously undesirable.
A more sophisticated approach is to use the multiple scales inherent in high-order simula-
tions to develop a spectral sensor, which is then combined with an artificial viscosity model,
to suppress oscillations in the shock region[9, 10]. This approach has been demonstrated
for unsteady problems, however for scale-resolving turbulent simulations the spectral sensor
will be active uniformly in space until all scales are fully resolved, so the approach effec-
tively becomes a Smagorinsky-like closure model which corrupts more sophisticated sub-grid
models.

An alternative approach by Barter and Darmofal[11] takes advantage of the discontinuous
nature of the pressure field between elements to develop a shock sensor which does not
examine the spectral scale separation, making it more attractive (on paper) for scale-resolving
simulations. This sensor is used as the source term in an auxiliary differential equation to
provide a smooth variation of the artificial viscosity coefficient (cf. [11, 12]). This approach
has been successfully applied to viscous blunt body flows through Mach 17[13, 14].

Lastly, methods which incorporate the strong form of the residual operator to construct a
so-called cross-wind diffusion operator have been tested[15–17]. These schemes are attractive,
as they start from a more mathematical point of view, however there is limited practical
experience in the literature on their application for spectral-element DG schemes.

The current paper examines the cross-wind diffusion operator, Barter and Darmofal’s
shock-capturing differential equation, as well as a novel shock-capturing formulation to better
understand the performance attributes of these schemes in our DGSEM solver. Benchmark
test cases for shock-capturing and turbulent flows are considered. The paper begins with
a brief review of the pertinent details of the DGSEM solver before examining the shock-
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capturing schemes.

2 Numerical Solver
The current work focuses on an entropy-stable DG spectral-element scheme, which sup-

ports arbitrary order in space and time. All of the computations in the current work use the
inviscid Riemann flux of Ismail and Roe[18] and a viscous stabilization similar to the second
scheme of Bassi and Rebay[19]. No specific corrections for the shock carbuncle problem are
applied.

The numerical scheme is designed specifically for scale-resolving simulations using a mul-
tiscale approach. Of particular note for the current work is the use of a tensor-product
preconditioner based on an approximate factorization of the inviscid flux Jacobian across
a finite element[20]. This provides an efficient scalar preconditioner for an advection-type
equation, which is competitive with block-diagonal approaches, while requiring a fraction
of the memory and algorithmic complexity. The downside of this is the inability to con-
dition significant diffusion terms or cross-coupled source terms. In developing high-order
shock-capturing schemes these can be significant liabilities, and part of the motivation for
the current work is investigating the seriousness of the problem, and possible mitigation
strategies.

3 Cross-wind Stabilization
We start by exploring Galeão and Dutra do Carmo’s cross-wind stabilization[15] in our

entropy-stable DGSEM scheme.* This adds artificial viscosity to the system of equations
using a dissipative volume operator based on a quadratic of the strong form of the residual,

Dcw = (Lv)T τ(Lv)
(∇v)T Ã0(∇v)

(1)

where v are the entropy variables, Ã0 is the metric tensor for the entropy variables, and L is
the nonlinear operator for the entire system. This acts only in the direction of the solution
gradient.

The scheme was applied to the viscous Burgers equation with sinusoidal initial conditions
using an 8th-order polynomial basis (Fig. 1). The shock-capturing operator does not com-

*Barth[16] and Hildebrand and Mishra[17] utilize a similar operator.
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pletely suppress non-positive overshoots around the shock, and the artificial viscosity is very
noisy, inhibiting the convergence of the system. Note that positivity of density and tempera-
ture is a prerequisite for entropy-stability of the Navier-Stokes equations, not a consequence,
so that while the non-positive overshoots are not fatal for Burgers equation, they are a
significant problem. Arbitrarily scaling the shock-capturing operator by small values (2-5x)
does smooth the solution, but still does not completely suppress the non-positive overshoots,
and becomes too stiff to converge at even modest scalings. As the operator greatly increases
the stiffness of the system, requires a strong-form of the residual which negates many of
the benefits of a discontinuous-Galerkin formulation, and requires an arbitrary scaling for
practical effectiveness, this approach was not pursued further.

(a) Space-time Solution (b) Artificial Viscosity

Figure 1: Space-time solution of viscous Burgers equation using Galeão and Dutra do Carmo’s artificial
viscosity scheme.

4 Artificial Diffusion
There are numerous ad-hoc methods to add an “artificial” viscosity to the Navier-Stokes

equations to suppress undesirable oscillations. One common and effective method uses an
artificial diffusion coefficient with a Laplacian operator of the flow variables. The cross-
wind stabilization from the previous section is an example. In the current effort, we are
concerned specifically with turbulence scale-resolving methods. As the Laplacian approach
does not have a clear physical analogue in compressible flows, it is difficult to incorporate
with subgrid-scale models for LES, and is not preferred here.

Following the physical diffusion in the Navier-Stokes equations, τij = µ (ui,j + uj,i) +
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λuk,kδij, artificial viscosity can be created which mimics either the shear (µ) or bulk vis-
cosity (λ) coefficients, typically using an analogous Prandtl number to dissipate the energy
equation. Artificial dissipation is not added to the mass balance in this approach. Choosing
an artificial bulk viscosity does not dissipate vorticity (cf. Mani et al. [21]), however it
does directly damp acoustic perturbations, while the opposite is true if the shear velocity is
chosen. Further, the mechanical pressure in a fluid (p̃) is given by

p̃ = p+
(
λ+ 2

3
µ
)
uk,k (2)

Stokes’ hypothesis thus ensures that the mechanical and thermodynamic pressure are iden-
tical. If the artificial viscosity scheme does not also satisfy Stokes’ hypothesis, this is no
longer the case, and the resulting scheme may not correctly predict the Rankine-Hugoniot
jump conditions[22].

The numerical experiments using the current shock capturing schemes empirically demon-
strate that specifying the shear artificial viscosity and having the bulk artificial viscosity
follow by Stokes’ hypothesis is more robust than specifying a bulk viscosity alone.

5 Barter and Darmofal Shock-capturing Method
Barter and Darmofal’s shock-capturing method[11] is presented for completeness and as

an introduction to the modifications which follow. The scheme uses an auxiliary differential
equation

ϵ,t −
(
L2

τ
ϵ,j

)
,j

= 1
τ

(λhS − ϵ) (3)

which acts as an unsteady differential equation to diffuse the shock capturing working variable
ϵ. The variables τ is a timescale, L and h are length scales, λ is a velocity scale, and S is
a source term which controls the growth or decay of the working variable. These scales and
the source term depend upon the flow state, and are hence coupled to the flow equations.
The artificial viscosity is then constructed from ϵ using a nonlinear filter,

µs =


0 if ϵ ≤ ϵmin

ϵmax if ϵ ≥ ϵmax

ϵmax

2 [1 + sin (π∆ϵ)] if ϵmin < ϵ < ϵmax

(4)
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where ϵmin = 0.01λh̄, ϵmax = λh̄, and ∆ϵ = ϵ−ϵmin

ϵmax−ϵmin
− 1

2 .
By construction, the auxiliary differential equation diffuses artificial viscosity generated

by the source term. The source term is based on a pressure jump indicator,*

Jκ = 1
|∂κ|

∫
∂κ

∣∣∣∣∣ JpK{p}

∣∣∣∣∣ · ndS (5)

which is integrated over all faces of an element. This converges as

Jκ =

O (hp+1) , smooth

O (1) , discontinuity
(6)

depending upon whether the flow contains singularities such as strong shocks. The shock
sensor is constructed from the pressure jump indicator as

S =


0 if log10 (Jκ) ≤ ψmin

1 if log10 (Jκ) ≥ ψmax

1
2 [1 + sin (π∆ψ)] if ψmin < log10 (Jκ) < ψmax

(7)

where ψmin = −2 − log10(p + 1), ψmax = −1 − log10(p + 1), and ∆ψ = log10 (Jκ) + 1.5 +
log10(p+ 1).

The above model is tested with the DG spectral-element solver by computing the flow
over an RAE 2822 airfoil at Mach=0.925, α = 2.92◦, Re = 60k, using 4th-order in space and
time. A snapshot from this unsteady simulation is provided in Fig. 2. The computed Mach
number field shows that the flow separates from the suction side of the airfoil at roughly
the 3/4-chord location, and a shock forms near the trailing edge. Figure 2b contains the
distribution of the working variable ϵ. As expected, the variation of ϵ is smooth, and does
recognize the shock location near the trailing edge, however some issues are apparent. The
largest magnitude of viscosity occurs during the expansion of the flow around the leading
edge, which is clearly unnecessary in terms of suppressing oscillations across a shock. This
occurs because the shock sensor is not able to discern expansion from compression, and
the large value of the diffusion coefficient in the shock-capturing model allows this viscosity
to spread across, and corrupt, many elements near the leading edge. This smoothing was
the intention of the original model, however it has a deleterious effect in turbulent flow

*Krivodonova et al. [23] utilize a similar jump sensor.
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simulations. The effect of diffusion on the convergence of the system will be discussed
further subsequently.

(a) Mach (b) ϵ

Figure 2: Snapshot from the unsteady simulation of flow over an RAE 2822 airfoil (Ma = 0.925, α = 2.92◦,
Re = 60k).

The second test case considers the decay of homogeneous isotropic turbulence (HIT) at
an initially high turbulent mach number, Mat =

√
2k
3 = 0.6 using 8th-order in space and

time and 323 degrees of freedom. The HIT is initially generated to a stationary state at
Reλ = 45 using the linear forcing methodology described in Garai et al. [6], then the forcing
is removed and the turbulence decays. Figure 3 presents a snapshot of the Mach number
and the artificial bulk viscosity from a slice through the domain during the decay. The
artificial viscosity is normalized by the molecular viscosity coefficient. There is a reasonable
correlation between high-speed regions and areas of large artificial viscosity, however the
entire domain is being overly dissipated even though the flowfield only contains regions of
smooth compression and weak shocklets. The shock sensor misinterprets the under-resolved
turbulence as discontinuities. If any region strongly triggers the shock sensor, every element
in the domain becomes influenced due to the large diffusion coefficient in Eqn. 3.

The influence of the artificial viscosity on the turbulence statistics in inferred in Fig. 4
using the variation of the kinetic energy and the pressure-dilatation correlation (

∫
puk,k).

The behavior of the shock-capturing scheme is compared to an implicit LES/under-resolved
DNS simulation, which remains stable at these conditions. The Barter model dissipates the
kinetic energy in the domain more strongly than the base entropy-stable scheme and does
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not contain any oscillations due to the acoustic energy. In this simulation a bulk artificial
viscosity is used, as discussed above, and from Fig. 4b we see that the pressure dilatation term
is nearly completely removed at these coarse resolutions. Note that the strongly oscillatory
behavior of the pressure-dilatation correlation is an acoustic response to the perturbation
in initial conditions, not a spurious result. Lastly, the shock-capturing simulations require
roughly 1000x the computational effort as the base scheme due to the increased stiffness of
the system.

(a) Mach number (b) Artificial Viscosity

Figure 3: A snapshot through the domain during the decay of homogeneous isotropic turbulence (Reλ = 45,
Mat = 0.6).

The diffusion coefficient in Barter and Darmofal’s model, L2

τ
, reduces to 15λh scaled by

a mesh anisotropy diagonal matrix. As Re = λh
ν

≫ 1, this means that the artificial viscosity
equation has a diffusion that is orders of magnitude larger than the physical diffusion of
the fluid equations, leading to a very stiff system which is dominated by convection in
the flow equations and diffusion in the auxiliary equation. The current DGSEM fluid solver
leverages a tensor-product sum-factorization approach for efficiency. As discussed in Sec. 2, a
matrix-free tensor-product preconditioner based on approximate factorization of the inviscid
operator is used, and performs well in convection-dominated regions of the flow, which is the
majority of the flowfield for external aerodynamics applications. A numerical test sets the
source term S = 0 in Eqn. 3, and modifies the diffusion coefficient to examine the convergence
of the nonlinear system (cf. Fig. 5). As expected, our current preconditioner fares very poorly
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Figure 4: Evolution of turbulence for homogeneous isotropic turbulence. ko is the target initial kinetic
energy and τ is the eddy turnover time. (Reλ = 45, Mat = 0.6)
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Figure 5: Convergence for the RAE 2822 airfoil simulation using varying artificial viscosity dissipation
coefficients and S = 0.

converging this system when the auxiliary equation is dominated by diffusion.

6 Modified Artificial Viscosity
Attempts were made to modify the original Barter and Darmofal differential equation to

improve the predictive ability and numerical properties to little effect. While modifying the
preconditioner is certainly possible, current options would require too much computational
expense to be competitive with the existing approach for the scale-resolving simulations
of interest. In other words, we prefer to modify the shock-capturing scheme to suit the
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characteristics of the solver, rather than vice versa. Further, the source term, which drives
the behavior of the artificial viscosity, contains an imposed temporal scale. In turbulent
simulations there is a broad range of scales of interest, and focusing the response of the shock
sensor to a single scale is problematic. For these reasons, we examine a scheme which does
not require an auxiliary differential equation to drive the artificial viscosity, but maintains
the same jump shock sensor (Eqn. 5). The main motivations proposed for constructing a
smooth artificial viscosity using a Poisson equation are improved robustness and accuracy.
This section will provide a preliminary assessment of these rationale for the current DGSEM
solver.

6.1 Numerical Test Cases

The stiffness of Barter and Darmofal’s model precludes the current DGSEM solver con-
verging on standard test cases for shock capturing. Beyond verification cases, only unsteady
simulations such as provided above were possible, and even these are computationally pro-
hibitive. Given this, a detailed comparison of the current modified artificial viscosity model
against similar results from Barter and Darmofal’s is not possible. Instead, the performance
of the modified shock-capturing scheme is evaluated on four representative configurations de-
scribed here. The first two cases are steady transonic (M∞ = 0.9) and supersonic (M∞ = 1.2)
viscous flow over a NACA 0012 airfoil at 5◦ angle of attack and a Reynolds number of 60,000.
The transonic case produces relatively weak shocks, but still strong enough that the current
fluid solver becomes unstable at high order without some form of augmentation. The super-
sonic case produces a weak bow shock and pair of fish-tail shocks aft of the trailing edge.
Both airfoil configurations involve interactions between the shock and a viscous shear layer.

The third test case is a more challenging steady, inviscid supersonic (M∞ = 4) blunt
body configuration developed for the International Workshop on High Order CFD Methods
(HOW)[24]. This case has simple well-defined boundary conditions, along with analytic error
measures for total enthalpy and stagnation pressure loss, that allow for comparison against
current state-of-the-art finite-difference and finite-volume methods.

The final test case is decay of homogeneous isotropic turbulence (HIT) at an initially
high turbulent mach number described above in Sec. 5.

All of the computational cases are intentionally tested using relatively coarse resolutions
as this is the most challenging situation for the shock-capturing scheme. Further, the NACA
0012 airfoil cases use a “generic” mesh that is not adapted to the shock locations in any
way. The supersonic bow shock configuration does use shock-adapted grids for consistency
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with the HOW test case. The element boundaries for the two baseline computational mesh
are presented in Fig. 6. Isolated cases are tested in refinement to demonstrate properties
of the schemes with increasing resolution. All of the test cases presented herein converge
to machine epsilon, either for a steady-state simulation, or for every step of an unsteady
simulation.

(a) NACA 0012 (b)
HOW

Figure 6: Element boundaries for the numerical experiments computational mesh.

6.2 Formulation

To begin, the working variable for the artificial viscosity is interpreted as the inverse of
a local element Reynolds number,

ϵ−1 = Reh = ρλh̄

µs

(8)

where λ = √
ukuk is a local velocity scale, not a spectral radius approximation of the flux

Jacobian, and h̄ = V1/3

p+1 is a local length scale. When ϵ ↓ 0, Reh ↑ ∞, µS ↓ 0 and the
shock-capturing viscosity is negligible. Near discontinuities ϵ ↑ 1, Reh ↓ 1, µS ↑ ρλh̄.

Ducros et al. [25] devised a sensor which automatically distinguishes regions of significant
vorticity from regions of significant dilatation. A modified version of this sensor, which also
responds to regions of pure shear, is used in the current work,

d = 2uj,juk,k

uj,juk,k + ui,jui,j + ϵd

(9)
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where ϵd is a scalar near machine epsilon that filters the ratio when numerator and denomi-
nator are both negligible.

Figure 7a presents the variation of the modified Ducros sensor for the flow over the
supersonic NACA 0012 test case at 8th-order. While the sensor reliably recognizes the region
of the bow shock and the boundary layer, in the majority of the domain the sensor displays
a highly oscillatory behavior that counteracts the efficacy of the sensor. This is caused by
the gradients being represented by high-order polynomials, then squared and formed into a
ratio, i.e. it is simply a consequence of the nature of a high-order representation.

To ameliorate this problem we utilize the modified sensor in a volume-averaged sense,

d̄ =
∫
d (xi) dV∫
dV

(10)

Figure 7b presents the volume-averaged modified Ducros sensor for the same supersonic
NACA 0012 test case as Fig. 7a. Utilized in this manner the sensor reliably targets elements
which are dilatation dominated (d̄ → 1) from those that are shear dominated (d̄ → 0).

(a) d (b) d̄

Figure 7: Behavior of the modified Ducros sensor, Eqns. 9 and 10, for the flow over a NACA 0012 (Ma = 1.2,
α = 5◦, Re = 60k).

The artificial viscosity Reynolds number is then formed using the jump sensor, Eqn. 5.
As with the original model, the exponential variation of the sensor is used to control the
behavior of the artificial viscosity. The functional form is given by

ψ = log10

(
d̄Jκ

)
+ 1 (11)

ϵ = Re−1
h = 1

2
[1 + tanh (2ψ)] (12)

This rapidly turns the sensor on when d̄Jκ exceeds 10−1. This intentionally provides a
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relatively modest amount of artificial viscosity. For comparison, Barter and Darmofals’
original model turned on when the sensor exceeded roughly 10−3, and the sensor was not
modified by the Ducros’ sensor. Here the entropy-stable scheme in inherently dissipative,
and it is observed to remain stable at higher speeds when traditional schemes based on
conservative variables diverge (cf. [26]), thus we expect to require less artificial viscosity
more sharply focused near discontinuities. As discussed in Sec. 4, we construct an artificial
shear viscosity and satisfy Stokes’ hypothesis, as this is empirically more stable in the current
scheme. This artificial viscosity scheme retains the entropy-stability property.

Equation 11 is not the only method to incorporate the Ducros-style sensor into the
artificial viscosity formulation, but does provide a baseline formulation. Other methods may
be tested going forward.

The variation of Mach number and artificial viscosity for the simulation of a NACA 0012
at Ma = 0.9, α = 5◦ is presented in Fig. 8 for 2nd-, 4th-, and 8th-order simulations on a
coarse mesh with 96 elements. As expected, the quality of the solution at this resolution
is poor, and the artificial viscosity is clearly discontinuous between elements, however the
simulations all remain stable and converge to machine epsilon. As the resolution is increased
with increasing order, the resolution of the shock, boundary layer, and wake improves, and
the the artificial viscosity responds to the new location and strength. Elements which share
a face crossed by the shock both see increased viscosity, however the local geometric scaling
(h̄) greatly increases the artificial viscosity as the mesh coarsens. Unlike the Barter and
Darmofal model there is no artificial viscosity produced in the expansion region around the
leading edge.

For completeness, a refined mesh simulation at 8th-order is performed for the NACA
0012 transonic test case (Fig. 10). With the improved resolution the flow structure and
the boundary layer are dramatically changed. A weak shock upstream on the airfoil surface
thickens the boundary layer and a weak shock forms in the wake structure. The maximum
artificial viscosity is reduced by an order of magnitude, as desired, and is localized around
the wake shock structures. The goal of the current artificial viscosity scheme is to maintain
stability on a coarse mesh so that (ultimately) an h − p adaptation strategy can refine the
mesh appropriately, however coarse resolution of shocks is still necessary in a refined limit,
as many regions of the flow may not contribute substantially to an output functional and
hence should not command significant computational resources.

Similar to the previous results, the variation of Mach number and artificial viscosity for
the simulation of a NACA 0012 at Ma = 1.2, α = 5◦ is presented in Fig. 9 using spectral re-
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(a) Mach number (b) Artificial Viscosity

Figure 8: Computed results for the flow over a NACA 0012. The top row contains 2nd-order simulations,
the middle row 4th-order, and the bottom row 8th-order. (Ma = 0.9, α = 5◦, Re = 60k).
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(a) Mach number (b) Artificial Viscosity

Figure 9: Computed results for the flow over a NACA 0012. The top row contains 2nd-order simulations,
the middle row 4th-order, and the bottom row 8th-order. (Ma = 1.2, α = 5◦, Re = 60k).
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(a) Mach number (b) Artificial Viscosity

Figure 10: Computed results for the flow over a NACA 0012 on a refined mesh (Ma = 0.9, α = 5◦,
Re = 60k).

(a) Mach number (b) Artificial Viscosity

Figure 11: Computed results for the flow over a NACA 0012 on a refined mesh (Ma = 1.2, α = 5◦,
Re = 60k).
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finement on the same coarse mesh. Again, the resolution of the flowfield in these simulations
is relatively poor, however the simulations remain stable and converge to machine epsilon.
The artificial viscosity does reduce as the resolution is increased, as desired. A refined mesh
simulation at 8th-order is presented in Fig. 11. As desired, the qualitative behavior of the
simulation is greatly improved with the increased resolution and the maximum artificial vis-
cosity is reduced by an order of magnitude and either localized to the bow shock region or
present in coarse elements away from the body.

The computed results for the supersonic blunt body flow are presented next in Fig. 12.
For this configuration the 8th-order simulation remains stable, but does not converge to
machine epsilon, and hence is not included. The artificial viscosity is not normalized for
this inviscid simulation. For this case a feature-aligned grid is utilized and the qualitative
nature of the simulation is improved greatly, and there are no obvious artifacts due to the
discontinuous nature of the artificial viscosity.

The error in total enthalpy in the domain is computed and compared against similar re-
sults using 2nd-order schemes from the OVERFLOW solver[27] using similar grids in Fig. 13.
The current results are on par with the reference results. Lastly, slices of pressure through
the simulated flowfield along the stagnation line and the surface are presented in Fig. 14.
Along the stagnation streamline the Gibbs phenomena is largely suppressed at both N=2
and N=4. Considering the pressure variation along the surface, with this coarse resolu-
tion the element boundaries are evident at 2nd order, but the jump is greatly reduced at
4th order, and the pressure remains smooth everywhere despite the discontinuous artificial
viscosity field. The surface stagnation pressure for both simulations agrees well with the
Rayleigh-pitot formula ( p

ρref a2
ref

= 15.0486).
Lastly, the decaying homogeneous turbulence computed earlier using Barter and Darmo-

fal’s scheme is reproduced (Figs. 15 and 16). The maximum artificial viscosity is roughly 2
orders of magnitude lower using the current modified scheme, and in many regions of the
flow becomes negligible, as desired. The decay of kinetic energy and pressure dilatation is
very close to the reference simulation, indicating the artificial viscosity is providing some
localized stabilization, but not damping the turbulence significantly. The computational
cost with the new approach is equivalent to the baseline implicit LES simulation.
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(a) Mach num-
ber

(b) Artifi-
cial Viscos-
ity

Figure 12: Computed results for the flow over the HOW supersonic blunt body. The top row contains
2nd-order simulations and the middle row 4th-order. (Ma = 4).
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Figure 14: Distribution of pressure along selected lines for the flow over the HOW supersonic blunt body
(Ma = 4).
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(a) Mach number (b) Artificial Viscosity

Figure 15: A snapshot through the domain during the decay of homogeneous isotropic turbulence (Reλ =
45, Mat = 0.6).

0.001

0.01

0.1

1

0 5 10 15 20

k
ko

t
τ

ILES
Barter
current

(a) Kinetic Energy

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0 5 10 15 20

PD
ko

t
τ

ILES
Barter
current

(b) Pressure Dilatation

Figure 16: Evolution of turbulence for homogeneous isotropic turbulence. ko is the target initial kinetic
energy and τ is the eddy turnover time. (Reλ = 45, Mat = 0.6)
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7 Review
An ad-hoc artificial-viscosity formulation for shock capturing is designed for a DGSEM

solver for scale-resolving simulations. The primary emphasis to-date has been on the robust-
ness of the scheme at relatively coarse resolution, as this is the most challenging use case
for shock-capturing. The initial results are encouraging, and a relatively simplistic scheme
successfully converges transonic and supersonic benchmark problems, while not destroying
turbulence features in tests of HIT. Despite the discontinuous nature of the artificial-viscosity
field, the simulation results remain smooth. Further study of accuracy requires inclusion of
h− p adaptation and feature-aligned meshing for comparison.

The current results indicate that a smooth artificial-viscosity field is not a strict require-
ment for robustness or smoothness of the resulting fluid fields. Examining Fig. 1b and
Fig. 7a it may be that smoothing formulations are successful by filtering highly oscillatory
constructions that are a natural consequence of a high-order representation, rather than
enforcing a Cp-continuous artificial-viscosity field. The current approach of agglomerating
sensors within an element achieves the same goal in a different manner.
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